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D E S C R I P T I O N  OF A SET OF S O L U T I O N S  
OF A DISSIPATION INEQUALITY FOR 
T H I R D - O R D E R  R E L A X A T I O N  S Y S T E M S  

V. T. Borukhov and D. M. Zelenyak UDC 517.938+536.7 

For the class of  linear dynamic systems indicated in the title, a variety of  the third degree is deter- 
mined and it is proved that the set o f  solutions of  a dissipation inequality is characterized by a limited 
convex component of this varie~. . Singular varieties are determined, and the relationship between them 
and the maximum and minimum elements of  the set o f  solutions for  the dissipation inequali~, is estab- 
lished The results obtained can find application in the theory of  linear viscoelasticity and the theory 
of generalized thermodynamic systems with memory. 

The applications of the theory of passive and relaxation dynamic systems are closely connected with 
the problem of mzithematical simulation of the response of  physical objects to an external action. In nonequili- 
brium thermodynamics the conditions of passivity and also narrower conditions of the relaxation state make it 
possible to isolate a thermodynamically narrow class of governing equations [1-5] required to close balance 
equations. 

Investigation of linear passive systems in the phase space of  states is based on a dissipation inequality, 
defined in [6, 7], in connection with the problem of absolute stability of nonlinear systems of differential equa- 
tions. On the other hand, dissipation inequalities understood in a broader sense were always important for rep- 
resenting the second law of thermodynamics in one form or another [ 1, 2, 8]. In [3-5] it is shown that sets of 
solutions of dissipation inequalities for linear passive systems determine the classes of physically admissible 
nonequilibrium thermodynamic potentials for generalized thermodynamic systems with memory. For the sys- 
tems that simulate viscoelasticity the solutions of a dissipation inequality characterize either the work to be 
done to bring a viscoelastic body from the reference to the given state, or the work that can be done by the 
body on its passage from the given to the reference state [5]. 

Thus, of interest is the problem of describing the set of  solutions of a dissipation inequality for linear 
passive and relaxation dynamic systems. For second-order relaxation systems this problem was solved in [5]. 
In [9], for arbitrary-order relaxation systems convex polyhedrons co_ and m+ were constructed that approximate 
from the inside and outside, respectively, the convex set co which is one-to-one connected to the set of all the 
solutions of the dissipation inequality. In the present work, we give an algebraic-geometric description of the 
set of solutions of  a dissipation inequality for third-order relaxation systems. 

Basic Notions and Definitions. X := R n and U := R r are the Euclidean spaces of dimensionality n and 
r, respectively; (', ')x is the scalar product in the space X; L(U, X) is the set of linear operators acting from U 
into X; L(X) := L(X, X); (A, B, C) is the triple of operators, where A ~ L(X), B ~ L(U, X), and C ~ L(X, U); 
B* is the operator conjugate to B (it is determined from the relation (Bu, x)x = (u, B*x}v k~ x ~ X, V u ~ U) . 

Let Q ~ L(X). The inequality Q > 0 means that Q = Q* and the quadratic form of  (Qx, x)x is strictly 
positive ((Qx, x)x> 0 V x ~ x , x ~ O ) .  If Q > 0, then (Qx, x)x > 0 V x ~ X. The condition that Q1 > Q2 is 
equivalent to the inequality Q1 - Q2 > 0. 

The triple (A, B, C) is identified with the following dynamic system prescribed in the space of states: 
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E : ~ c ( t ) = A x ( t ) + B u ( t ) ,  y ( t ) = C x ( t ) ,  t~  R ,  

w h e r e x ~  X, u ~ U, a n d y ~  U. 
If the condition 

t 

(u (X), y (X))u dx > 0 , 'Vt~ R ,  V u ( . ) ~  H ,  

is satisfied, where H is the set of locally summed up and integrated (with a square) functions with carriers 
restricted on the left, then the system E is called passive. 

The results of [10] yield that the following statements are equivalent: 1) the system E is passive; 2) 
there is the solution Q > 0 of the inequality 

L Q : = A * Q + Q A  <O, (l) 

that satisfies the condition 

QB = C* ; (2) 

3) if the pair (x(t), u(t)), t ~ R, satisfies the system E, then the dissipation inequality is satisfied: 

l d  
2 -~ (Qx (t), x (t)) x < (u (t), y (t)) U , V t  ~ R ~ Vu (.) ~ H .  (3) 

The set f~ of all the solutions of system (1) and (2) coincides with the set of the solutions of dissipa- 
tion inequality (3), is convex and compact in L(X), and also has maximum, Q+> 0, and minimum, Q->  0, 
elements, so that Q-<  Q < Q÷ holds for any solution Q [10]. According to [5], the solutions Q~ determine the 
minimum and maximum thermodynamic potentials for linear thermodynamic systems with memory. 

We determine the boundary 3f~ of the convex set f~. Let f~ be the relative interior of f~, i.e., the to- 
tality of internal points of the set f2, if ~ is considered as a subset of its affine shell. Then 3~2 := f~ \ fL 

Next we consider the problem of describing the set ~ of the solutions of  dissipation inequality (3) for 
a subclass of passive systems, namely, third-order relaxation systems: 

E = (A, B, C), A = diag (~'t, k2-, ~L3), B = C* = (bl, b2, b3)*, (4) 

where ~.3<~L2 <~LI <0, bi>0,  i = 1, 2, 3. 
The solution of this problem will require several standard notions from algebraic geometry. An alge- 

braic set or variety is the name given to a subset of  the space R 3 consisting of  all the joint real zeros of a 
finite number of polynomials of three variables with coefficients from the field of real numbers. The geometric 
image of nontrivial varieties in R 3 is the points, lines, and surfaces of the dimensionality zero, one, and two 
respectively. 

For the variety P (dim P = 2) prescribed by the equation F(Xl, x2, x3) = 0 the point (x~, x2, x~) ~ P is 

O F * * *  
called the singular point if ~x~x,(Xb x2, x3) = 0, V i = 1, 2, 3. The dimensionality of  the variety tangent to P is 

equal to two at a nonsingular point and to three at the singular one [ 11 ]. 
Definition 1. The part Po (dim Po = 2) of the variety P will be called a limited convex component oJ 

the variety P if Po is the boundam, of  the convex limited set in R 3. 
We note that the limited convex component Po represents the surface in R3; however, Po need not be 

a variety in the sense specified above. 
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Algebraic-Geometric Parametrization of the Set f2. First, we will determine the set to in R 3 con- 
nected to the set f~ in a one-to-one manner .  We  will consider the system (1) and (2) for  the matrix Q = (qij), 
i, j = 1, 2, 3, (qij = qji). From Eq. (2) it fol lows that 

-1 
q H  = 1 - m12  q12 - m13  q 1 3 ,  q22 = 1 - m l 2 q l  2 - m23  q 2 3 ,  

-1 -1 
q33 = 1 --  m l 3 q l  3 -- m23q23 , ( 5 )  

where mij= bjbTl>O, ( i , j ) ~  y : =  {( i , j )  : 1 < i < j < 3 } .  
We  assume that q = (ql2, q13, q23) E ' R  3. According to (5), the matrix Q f rom (2) depends on the 

vector q, with the condition Q(q) ~ ~2 being satisfied if and only if q ~ {q : LQ(q) < 0} = :to. Consequently,  
the mapping q ~ Q(q) (V q ~ to) assigns a one-to-one correspondence between to and f2, with the set to being 
a convex compac t  and the boundary Oto corresponding to the boundary Of 2. Hence it follows that the prob lem 
of  the descript ion of  a set of  solutions o f  dissipation inequality (3) is equivalent to the problem of  description 
of  to, which, owing to the convexity of  to, is reduced to finding the boundary Oto. 

T h e o r e m  1. The surface Oto coincides with the sole limited convex component of  the variety 

P = {q: det LQ (q) = 0}. (6) 

The p roof  of  Theorem 1 and of  subsequent statements are given in the Supplement.  
W e  now pass to the problem of  calculation of the maximum Q+ and min imum Q-  solutions of  dissipa- 

tion inequality (3). We  will determine the points q+, q- e to by the equality Q(q-+) = Q~. The following is true: 
T h e o r e m  2. The points q+ and q- are singular for the variety P. 
We present a system of  equations for  the singular points of  the variety P belonging to ato. For this we 

introduce the fol lowing notation: 

-1 
1 + 0~12 + 0~13 + (Y¢~3 hi) +ni /  , 76 = - , (i,j) ~ 7.  (7) 

nij : = ~'J ~71 ' O~iJ ; = 2 2 (1 + (xij) 

T h e o r e m  3. The point q = (q12, q13, q23) E 0to is singular if and only if it is a nontrivial solution of  

the system of  equations 

723q12q13 + m12q12q23 + m13q13q23 = q 2 3 ,  

-1  
ml2qt2qt3  + 713q12q23 + m23q13q23 = q 1 3 ,  

-1 -1 
m13q12q13 + m23q12q23 + 712q13q23 = q12 • 

(8) 

From each of  the equations o f  sys tem (8) we will express one of  the variables, e.g., ql2: 

1 - m 13ql 3 1 - m23q23 Y12q13q23 
q12 = q 2 3  = q 1 3  -1 -1 -1 

723q13 + m12q23  m12q13 + 713q23 1 --  m l 3 q l  3 -- m23q23  

Since q g: (0, 0, 0), to find q13 and q23 we have the system 

-1 -1 
(1 - m13q13) (1 - ml3ql 3 - m23q23) = Y12q13 (Y23q13 + m12q23), 

-1 -1 -1 
(1 - m23q23)  (1 - m l 3 q l  3 - m23q23)  = 712q23 (713q23 + m 1 2 q 1 3 )  

o r  
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T A B L E  1. Singular Points o f  the Variety P for the System Eexam ~Je 

Coordinate axes 

x := q12 

Y := q13 

z := q23 

q-  

0.1316 

0.0452 

0.3322 

q] 

-0.1966 

-0.0569 

0.4101 

q2 

0.2542 

--0.0878 

-1.2310 

q* 
-0.3799 

0.1105 

-1.5196 

0.~ 

7- 7, 
/ / ' i ) .  2 

-r~ .# / o ,  J5 

-( ~ / / .  l 
/~ a05 

.2" 0 
x. O. ,;,.. .~'~;:0.~ Y 

03 -0,1 
Fig. 1. Surface 303 as a part o f  the variety P for  the system Y'exampte. 

"~ -1 -1 
q13 (]'12"/23 -- 1) + q13q23m12 (]'12 -- 1) + q13 (m13 + m13) + q23m23 -- 1 = 0 ,  

- t  -1  -1  
q23 (]'12]'13 -- 1) + q13q23m12 (]'12 - 1) + q23 (m23 + m23) + ql3ml3 - 1 = 0 .  

(9) 

Equations (9) prescribe two  conics that, as can easily be verified, have a hyperbolic type. Thus, f rom 
T h e o r e m  3 follows 

C o r o l l a r y  1. The singular points of  the variety P that belong to 303 are determined by the points o f  the 
intersection of  two hyperbol ic- type conics prescribed by Eqs. (9). 

T h e o r e m  4. 1) The number of singular points of the variety P that lie on 003 is equal to four; 
2) the coordinates of the singular points satisfy the inequality q12qt3q23> O, with all four singular 

points being located on the surface ~03 in different octants; 
3) for the points q+ the inequalities qY2 > 0, qT3 > 0, q23 > 0; q]-2 < 0, q]'3 > 0, q+3 < 0 hold. 
On the basis of  Theorems  1-4 it is possible to give the following qualitative picture of  the surface 

003. It is known [11] that if  there are two singular points on the variety of  the third degree, then the straight 
line passing through them lies entirely on this variety. In our case, ~03 is the limited convex component  of  a 
cubic  variety and. consequently, six segments lie on 303 that connect four singular points. Figuratively speak- 
ing, our  figure represents an "inflated" tetrahedron. 

We will illustrate the .obtained results in relation to the relaxation system ~'exarnple: (~,1, ~2, ~'3, bh b2, b3) 
= ( -1 ,  - 100 ,  -1000,  1, 1, 1). The  singular points o f  the variety P for it are given in Table 1 accurate to four  
decimal  places. The surface ~03 as a part of  the variety P is indicated in Fig. 1. 

Supp lemen t .  Proof of Theorem 1. According to the Sylvester  criterion [12], condition (1) for sys tem 
(4) in the symbols of  (7) takes on the form 

q l l - > 0 ,  q22->0, q33->0,  

1 9 
~- W12 : = 2qllq22 - (1 + ~12) q12 -> 0 ,  

(s[) 
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1 2 
-~ W13 : = 2q t lq33  - (1 + al3) q13 > 0 ,  

1 ") 

~- W23 : = 2q22q33 - (1 + 0t23 ) q23 -> O ,  

1 
~- WI23 : = 2qllq22q33 + (1 + o~12 + (3t,13 + (X23) q12q13q23 - -  

9 ~ 9 

- (1 + (zÂ2) q12q33 - (1 + 13(13 ) q13q22 - (1 + 1X23 ) q23ql l  -> 0 .  

Investigating simultaneously the inequalities W12 >_ 0 and ql l  > 0 (or Wp_ >_ 0 and q22 >-0), w e  see that 
they separate one-half (with its interior) o f  the cone Wl2 = 0. Similarly,  s tudying the remaining inequalities of 
the first and second degree, we come to the conclusion that the first six inequalities in system (S l) determine 
the intersection of three half-cones with their interiors. 

Next, we consider the intersection of  the cone Wl2 = 0 with a set o f  points assigned by the inequality 

WI23 _> O. W e  have 

, )  ,-) 

(1 + 0~12 + ~13 + 0"2-3) q 1 2 q 1 3 q 2 3  - -  (1 + 0~13 ) q13q22 -- (1 + G~2_3) q23ql l  > 0 ,  

2qllq22 = (1 + 0~12 ) q12- 

In the system obtained the inequality will additionally be multiplied by  2q22 and, using the equality, we  obtain 

"3 "3 

2 (1 + (x12 + (xi3 + 13(-23 ) q12q13q23q22 -- 2 (1 + 0:13 ) q13q22 - -  (1 + (XI2) X 

× ( 1 + (~¢23) q-12q23 > O. ($2) 

It can easily be seen that for the coefficients ~q, (i, j )  ~ y, the fol lowing identity holds: 

(1 +~12+~13+0~_3)2 = 2 ( l  + ~12)(1 + OC13) (1 + Ot£'3). (S3) 

With account for ($3), inequality ($2) takes on the form 

"3 

((1 + ~12 + ~13 + 02-3) q12q23 -- 2 (1 + ~13) q13q22)- -< 0 .  ($4) 

Relation ($4) can be satisfied only when it degenerates to an equality. 
Thus, the cone Wl2 = 0 refers to the third-degree variety def ined by the equation W123 = 0. The same 

can be said about the cones W13 = 0 and W23 = 0. 
Further we note that the planes q n  = 0, q22 = 0, and q33 = 0 do not intersect and do not touch the 

surface bo), since their equations are not compatible with the conditions W12 > 0, Wl3 > 0, and W23 > 0. 
We obtained that 00) coincides with that part  of  the variety P which is contained within the cones 

determined by the inequalities W0{ q) > 0, (i, j)  ~ y. Since co is a convex  compact ,  ~0) is the l imited convex 
component  of  the variety P. It is evident that the cubic variety cannot  contain several limited convex  compo-  
nents. Theorem 1 is proved. 

Proof of Theorem 2. The existence of Q+ can be written as V x ~ R 3 3 extr  (x, Q(q)x) = (x, Q~x). The 
q~ ~o~ 

operators Q~ are independent o f  x and, consequently, an ext remum can be sought at any x. Having  taken se- 
quentially three single unit vectors as x, we come to the conclusion that 

arg rrfin (x, Q(q)x) = arg nfin qii (q) ,  
q~ 0o3 q~ Oo~ 
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arg max (x, Q(q)x)  = arg m a x  qii (q) , i = 1, 2, 3 .  
q~3o~ q ~ o  

Hence it follows that the dimensionali t ies o f  tangent var ie t ies  at extremal  points are equal  to three. Thus, the 

points sought are located among the singular  points  of  the var ie ty  P.  Theorem 2 is proved.  

Proof  o f  Theorem 3. The singular points  of  the var ie ty  P satisfy the system W123(q) = 0 and VW523(q) 
= 0. In expanded form it is written so (the argument  q will  be  omi t ted  for brevity):  

-1 -1 
W523 = mlzW13 + m52W23 + W 3 = m13W12 + m53W23 + W 2 = 

- l  (S5) = m23W12 + m23W13 + W 1 = 0 .  

Here the following designat ions are introduced: 

W 1 = WI2A3 + Wl3,12 = 4 (1 + 02_3) q23qll -- 2 (1 + Ctl2 + Cq3 + ~123 ) q12q13, 

W 2 = - (W52.23 + W23.12) = 4 (1 + t~13) q13q22 - 2 (1 + ~12 + °~53 + °~_3) q12q23 , 

W 3 = W53,23 + W23,13 = 4 (1 + ~12) q12q33 - 2 (1 + cq2 + tXl3 + t~_3) q13q23 , 

-1 -1 
Wl2,13 = 2 (1 + n23) q55q23 - (1 + hi2 ) (1 + n53) qt2qt3,  

where 

- 5  
W1332 = 2 (1 + n23 ) ql 1q23 - (1 + n12 ) (1 + n13) q52q13, 

-1 -1 -1 
-- n23) qt2q23, +n52)  + W12.23 = 2 ( l + n i 3 ) q 2 2 q 1 3 + ( l  (1 

W23.1: = - 2 (1 + n53 ) q22q13 + (1 + hi2 ) (1 + n23) q12q23, 

- 5  -1 
W53,23 = 2 (1 + n12) q33q12 - (1 + n23 ) ( l  + hi3) q13q23. 

-1 
W23.13 = 2 (1 + nl2) q33q12 - (1 + n53 ) (1 + n23 ) q13q23 • 

L e m m a  1. On 303 system ($5) is equivalent to the sys tem 

W12 -=- W13 -- W23 = W 1 = W 2 = W 3 - - O .  ($6) 

Proof. In sys t em ($5) we expand the de terminant  W523 in the first  co lumn WI23 = 2 q l l W 2 3 -  (1 

WI23 = 2q33W12 + (1 + n l f l  q53W12.23 - ( 1 + n23) q:3W1233, 
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+n12)(q12W13,23 + (1 +n13)q13W12.23 and ove r  the first l ine  W123  2qllW23 (1 -1 = -- +n12)q12W23A3+(l + h i  1) 

q13W23. 12. Adding up, we will obtain 2W123 = 4 q l l W z 3 - q 1 2 ( ( l  +n12)W13.23 +(1  +n]~)W23A3) + q13 ((1 +n13) 

W12.23 + (1 + nil)w23.12) = 4q55W23 - 2q12W3 - 2q13W2. 

Expans ions  ove r  the second l ine and second  c o l u m n  have  the fo rm W123 = 2q22W13- (1 + n12) 

q12W13.23 ( 1 -5 -5 - + n23)qz3W13A2, WI23 = 2qz2W13- (1 + n12)q12W23.13 + (1 + n23)q23W52A3 . Their  sum gives  

2W123 = 4qzzW53-q12(( l  +nlz)W13,23 + (1 +nl~)W2333) - q23((1 +n23)W12,13 + (1 +n21)W13,12) = 4q22W53 

- 2q12W~ - 2q23Wl • 

Finally, expanding the determinant W523 over  the r ema in ing  line and column, we wil l  have 



-1 -1 
WI23 = 2q33W12 + (1 + n13 ) q13W23.12 - (1 + n23 ) q23W13,12, 

= + hi3) W23,12) - 2W123 4q33W12 + q13 ((1 + n13 ) W12.23 + (1 -1 

-- + n23) W13,12) = 4q33W12 - 2ql3W2 - 2q23W1 • q23 ((1 + n23 ) WI2.13 + (1 -1 

As a result, system ($5) takes on the form 

-1 
m12W13 + m12W23 + W-~ = 0 ,  

-1 
m13W12 + m13W23 + W 2 = 0 ,  

-1 
m23W12 + m23W13 + W 1 = 0 ,  

2q l l  W23 - q12W3 - q13W2 = 0 ,  
($7) 

2q22W13 - q12W3 - q23Wl = 0 ,  

2q33W12 - q13 W2 - qz3 Wl = O . 

We will consider it as a linear system of six equations for six unknown quantities Wt2, Wl3, W23, Wt, W~, and 

W~. Having eliminated WI, W2, and W~, we arrive at the system 

-1 -1 
ml3qj3Wl2  + m l 2 q l 2 W l 3  + (1 + qll) W23 = 0 ,  

-1 
m23q23W12 + (1 + q22) WI3 + m12q12W23 = O, 

(S8) 
( 1 + q33) WI2 + m23q23W13 + m13q13W23 = O. 

The determinant A o f  this system is equal to 

A = - (q l  lq22q33 - ql 1q23 - q22q13 - q33q12 + 2q12q13q23) - 

, )  , )  , )  

--(ql 1q22 - q~2) - (ql 1q33 - q13) - (q22q33 - q23) - qll - q22 - q33 - 1 . 

We note that in parentheses are the principal minors o f  the matrix Q. Since on 3c0 the matrix Q is defined 

positively, A < 0. Consequently,  the sole solution o f  system ($8) is zero. In other words, system ($5) is equiva- 

lent to system ($6) on 360. Lemma 1 is proved. 

L e m m a  2. 1) W12 = W13 = W23 = W123 = 0 ~ W 1 = W~ --. W~ = 0; 2) at q i j ¢ O ,  ( i , j )  ~ ~, the reverse 

is true: WI = We = W3 = 0 ~ W12 = W13 = W23 = W123 = 0. 

Proof .  1) We  will show, for example, the validity of  the equality W~ = 0; the remaining two are de- 

rived by analogy. 

From W123 = 0 it follows that 

2qllq22q33 + (1 + 0~12 + (x13 + 062_3) q12q13q23 - 

- (1 + C~12 ) q~2q33 - (1 + ~13) q~3q22 - (1 + 0.2_ 3) q~3qll = 0 .  ($9) 

Taking into account that Wl2 = 0, f rom ($9) we obtain (1 +cq2  +cq3 +~23)q12q13q23 - (1 + ~13)q13q22- 
(1 + ~23)q~3qll = 0. We additionally multiply the latter relation by 2q22 and again apply the equality W12 = 0: 
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,1 , )  

2 (1 + cq2 + c~13 + 0.23 ) q12q13q23q22 --  2 (I + ~13)  q-t3q22 - (1 + ~12) × 

o ") 

× ( 1 + 13C2_3) q12q23 = 0 

or ((1 + oq2 + oq3 + o~23)q12q23 - 2(1 + oq3)q13q22) 2 = O, i.e., W2 = 0. 
2) Since We = 0, we have a chain of  equalities: 

9 

q13W12 = 4qllq22ql 3 - 2 (1 + (x12) q12q13 = 2 
1 + (x12 + 0[,13 -at- ciu23 

( l  + (XI3) 
q l l q 1 2 q 2 3  -- 

,.) 

- 2 (1 + c~12) q12q13 = 
1 + 0~12 

l + ~12 + (X13 + 13¢'23 
q12 (4 (1 + (~2_3) qllq23 - -  

- 2  (1 + oq2 + oq3 + (x2_3) q12q13) = 
l + 1~12 

1 + (x12 + 0~13 + (x23 
ql2W1 • 

We see that at q6 ¢: O, (i, j) ~ 7, the equality W1 = 0 entails Wl2 = 0. Similarly we can also show that W13 = 

W23 = 0. The expansion of  W123 = 2qHW23-  q l2W3-  q13W2 = 0 completes the p roof  of  Lemma 2. 
On the basis o f  Lernmas 1 and 2 we can conclude that each nontrivial solution o f  the system 

W 1 = W 2 = W 3 = 0 (SIO) 

is the solution of  system ($5) and, vice versa, any solution o f  system ($5) on O00 satisfies system (SI0).  In the 

designations of  (7) system (SI0) will be written as 

qt  1q23 - 723q l2q l3  = q22q13 -- 713q12q23 = q33q12 -- 712q13q23 = 0 .  (Sli) 

With account for equalities (5) Eqs. (S 11) will take the form of  (8). 

If one of  the nondiagonal elements qij, (i, j )  ~ 7, is equal to zero, then, according to (8), the remaining 

ones will also be equal to zero, but the point q = 0 does not lie on 0e0. Thus, we can state that the singular 
points of  the variety P belonging to 0c0 are the nontrivial solutions of  the system of  equations (8) and they 
alone. Theorem 3 is proved. 

Proof of  Theorem 4. First we note that a set o f  relaxation systems is bound in R 3 x R 3, since the space 

of  the parameters of  such systems represents the Cartesian product o f  two cones:  Vl = {0~l, )~2, ~'3):~'3 

<L2<~, l  <0}  and V 2 = {bi:bi>O, i = 1, 2, 3}. Cont inuously changing the parameters (3. l, ~ ,  ~3, bb  b2, b3) 
Vl × V2, it is possible to obtain any other system not leaving the class of  relaxation systems. In this case the 

coefficients mo., 7~, (i, j) ~ 7, may be considered as continuous functions o f  ~.i, bi, i = 1, 2, 3, in the domain 
of  their determination Vl x V2. 

For the values of  the parameters o f  the system ~example t h e  statements o f  Theorem 4 are valid. We will 
prove that with change in the parameters (~1, L2, 3-3, bb  b2, b3) E V 1 x V 2 the quantity o f  the singular points 

of  the variety P that lie on ~0), i.e., of  nontrivial real solutions of  system (8), remains  a constant number equal 

to four. 
System (9) can be reduced to the fourth-degree equation 

4 
a4q23 + ... + a o = O. (S12) 

The coefficient a4 of  this equation is equal to a4 = (712713 - I)(712713 - 1)(712723 - 1) - (712 - 1)2). We will rep- 
resent the factors in terms of (xij, (i, j )  ~ 7, using identity ($3) and estimates c~ij > 1, (i, j) ~ 7, that directly 
follow from the inequalities 3. 3 < 3.2 < )~l < 0: 
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712)13- 1 = 

o 

( 1 + 0~12 + (g13 + 0t'23)- 

4 (1 + ( / '12)  (1 + al3) 

1 + tx23 ct23- 1 
- 1 - - -  1=  > 0 ;  

2 2 

( ~ t 1 2 ~ 1 3  -- 1) ('~t12~2 3 --  1) - ('J'J2 - 1) 2 - - -  - -  
eC2_ 3 -- 10Cl3- 1 (tXI3 + (/2-3 -- ¢~12 -- 1) 2 

m 

2 2 4 (1 + o~12 )- 

(a13 -- 1) (a23 -- 1) (Gt,13 -- l) ((/"2-3 -- 1) ((/.12 -- 1) ((/'13 -- l)  (13t23 -- 1) 
- -  . > 0 .  

4 2 (1 +oq2 ) 4(1  +tXl2 ) 

Both factors are strictly positive; therefore a 4 : ¢ 0  , and Eq. (S12) cannot degenerate into an equation o f  a 
smaller degree. Consequently,  Eq. (S l2)  always has four roots, and we are to show that with change in the 
parameters o f  the system the roots will remain real. 

From the theorem of  continuous dependence of the roots of  an algebraic equation on its coefficients 
[13] and from the reality of  the coefficients in (Sl2),  it follows that Eq. (S l2)  will not have complex roots if 
it does not have multiple roots at any values o f  the parameters (Xb ~2, X3, bb b2, b3) E V 1 × V2. The appear- 
ance of  the multiple root is possible only on convergence of two singular points. For this purpose they must 
intersect a certain coordinate plane, since the singular points of  the variety P of  the initial system Yexample are 
located in different octants. However,  this is not essential, since if qij = 0 for some (i, j )  ~ y, then, according 
to Eq. (8), q = (0, O, 0), but the coordinate origin does not lie on 0o). Thus, the points do not leave their 

octants. For the singular points of  the variety P of  the system "~-'example the inequalities q12 > 0, qT3 > O, q23 > 0; + 
q]-2 < 0, q~'3 > 0, q+3 < 0; q12q13q23 > 0 satisfied. From what has been said above and from the singularity o f  q 
it follows that they remain valid for the singular points belonging to 0to and with change in the parameters 

(~,1, ~2_, ~.3, bl, b2, b3) E Vl × V2. The theorem is proved. 
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